An Operational Approach to Quantum Stochastic Thermodynamics
November 19th, 2018 PHILIPP STRASBERG UAB Barcelona

Whenever a small, fluctuating system is continuously, passively and perfectly observed, classical stochastic thermodynamics provides a successful theory to describe its thermodynamics far from equilibrium. The problem that not even classically it is well understood how to include, e.g., disturbing or incomplete measurements, has also hindered progress in formulating a quantum version of the theory. Based on the recently developed process tensor, which describes a quantum stochastic process with arbitrary experimental interventions (a quantum causal model), I will define internal energy, heat, work and entropy along a single trajectory. These definitions fulfill a first law at the trajectory level and a second law on average. As a guiding example throughout the talk, I will use the photon number stabilization experiments performed in the group of Serge Haroche.

Seminar, November 19, 2018, 16:00. ICFO’s Seminar Room

Hosted by Prof. Antonio Acín