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We investigate entanglement distribution in pure-state quantum networks. We consider the case when non-
maximally entangled two-qubit pure states are shared by neighboring nodes of the network. For a given pair of
nodes, we investigate how to generate the maximal entanglement between them by performing local measure-
ments, assisted by classical communication, on the other nodes. We find optimal measurement protocols for
both small and large one-dimensional networks. Quite surprisingly, we prove that Bell measurements are not
always the optimal ones to perform in such networks. We generalize then the results to simple small two-
dimensional �2D� networks, finding again counterintuitive optimal measurement strategies. Finally, we con-
sider large networks with hierarchical lattice geometries and 2D networks. We prove that perfect entanglement
can be established on large distances with probability one in a finite number of steps, provided the initial
entanglement shared by neighboring nodes is large enough. We discuss also various protocols of entanglement
distribution in 2D networks employing classical and quantum percolation strategies.
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I. INTRODUCTION

Quantum networks �1,2� play a key role in quantum-
information processing. In such networks, quantum states
can be prepared initially and shared between neighboring
nodes �or stations�, i.e., entanglement can be generated, and
this resource is then to be used for quantum communication
�3,4�, or distributed quantum computation �5� involving arbi-
trary nodes of the network. One of the main tasks is then to
design protocols that use the available quantum correlations
to entangle two distant nodes of the network, and to optimize
these protocols in terms of final entanglement and probabil-
ity of success.

A set of quantum repeater stations, for instance �see Fig.
1�a��, can be considered as a one-dimensional �1D� quantum
network, where the aim is to establish quantum communica-
tion over large distances �6–9�. It is well known that the
simple entanglement swapping �10� procedure can achieve
this goal. Entanglement swapping �see Fig. 1�b�� consists in
performing a joint Bell measurement, i.e., a measurement in
an orthonormal basis of maximally entangled states at the
nodes B and C, in order to achieve the entanglement between
the nodes A and D. This protocol is then repeated between
the further nodes of the network �see Fig. 1�c��. Unfortu-
nately, except for the unrealistic case of perfect resources and
operations, the probability of obtaining entanglement be-
tween the end nodes of such a network decays exponentially
with the number of repeaters. This problem can be overcome
by the more sophisticated quantum repeaters protocols �6–9�

which intersperse connection steps �entanglement swapping�
with purification and distillation steps and result only in a
polynomial decay, thus opening the way for feasible long-
distance quantum communication. This way is not free of
obstacles, however. In particular, its technical realization re-
quires the development of efficient and reliable quantum
memories �9,11�.

In a recent work �12�, we have proposed an approach
which can be regarded as an alternative to the repeaters
method and which exploits the high connectivity of the quan-
tum network. In particular, in two-dimensional or higher di-
mensional lattices of arbitrarily large size, a perfect connec-
tion between any two nodes is possible with a probability
that is strictly greater than zero, even with imperfect re-
sources. This can be achieved by the so-called entanglement
percolation strategies, which will be discussed in the next
sections. The inspiration used in the construction of these
strategies comes from classical bond percolation theory.
Classical bond percolation describes many phenomena that
we know from everyday life, from fluid dynamics in porous
media to propagation of forest fires �13,14�. An introduction
to this concept is given in Appendix A, where we collect the
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FIG. 1. Notation and examples of 1D networks: �a� the standard
quantum repeater scenario; �b� entanglement swapping; �c� a two-
repeater system.
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main ideas from classical percolation used in the present
study. In the context of quantum networks, by entanglement
percolation strategies we mean any protocol consisting of
local operations and classical communication �LOCC� such
that two distant nodes in an arbitrarily large lattice share an
entangled state.

The fact that percolation strategies work is in itself very
encouraging, but it remains of little use for finite and small
networks �15,16�. The aim of the present paper is twofold:
first, we investigate and derive optimal local measurement
protocols for simple networks of finite size. In particular, we
consider certain 1D and two-dimensional �2D� networks of
nodes that consist of z qubits, where z is the number of
neighbors. Neighboring nodes share partially entangled pure
states. We apply then local quantum operations to the nodes,
assuming that these operations are noiseless. We first address
the question of optimal entanglement propagation in small
networks consisting of three or four nodes only. The insights
obtained for these simple situations are then used as building
blocks for larger 1D and 2D quantum networks, as well as
networks with hierarchical geometry.

Our second aim is to discuss examples of hierarchical
“diamond” and “tree” lattices, in which perfect entanglement
on arbitrarily large distances can be achieved in a finite num-
ber of steps �measurements�. Provided that sufficiently large,
but not necessarily maximal entanglement is present, we can
convert connections along a given line into perfect singlets.
Finally, we consider various kinds of percolation strategies:
the one presented in Ref. �12�, which employs a change in
the lattice connectivity due to quantum measurements, and a
different one in a triangular lattice, where the optimal singlet
conversion strategy is used. Both of these protocols essen-
tially demonstrate that the quantum percolation thresholds
are lower than their classical counterparts. Equally interest-
ing we propose to use the optimal singlet conversion strategy
to transform a square lattice into two independent square
lattices of doubled size, for which the percolation probability
is larger than in the original lattice.

Outline. In Sec. II we fix the notation and define the fig-
ures of merit used for evaluating the measurements effi-
ciency: the concurrence �C�, the so-called worst case en-
tanglement �WCE� and the singlet conversion probability
�SCP�. In Sec. III we describe the strategies maximizing
these quantities for some 1D networks, starting from a
simple one-repeater configuration, consisting of two bonds
with two imperfectly entangled pairs on them. Interestingly,
there exists a strategy that conserves the averaged singlet
conversion probability �17�; the protocol, however, does not
scale with the number of repeaters, as expected. Section III B
deals with the problem of two repeaters, that is, three bonds.
Here the optimization of the SCP is much more complex: in
some conditions we obtain that the optimal measurements do
not correspond to a Bell measurement. This result is some-
what analogous to the recent result by Modławska and
Grudka �18�, who have demonstrated that nonmaximally en-
tangled states can be better for the realization of multiple
linear optical teleportation in the scheme of Knill, Laflamme,
and Milburn �19�. The last part of this section deals with a
large 1D network �i.e., in the limit of infinite size network�.
Here we prove that the probability of establishing entangle-

ment over large distances decays exponentially. We present
optimal strategies for the concurrence and the WCE, and
upper bounds for the SCP.

In Sec. IV we turn to the simplest small network in 2D: a
square. We obtain similar results as in the case of two repeat-
ers in 1D, indicating that Bell measurements do not always
provide the best protocol. In Section V we apply the results
of previous sections to networks of large size and hierarchi-
cal geometry, that is, lattices that iterate certain geometric
structures, so that at each level of iterations the number of
nodes, or the number of neighbors changes. We consider two
kinds of hierarchical lattices: first we discuss the so-called
“diamond” lattice, for which we prove that for sufficiently
large initial entanglement, one can establish perfect entangle-
ment on large scales �i.e., some lower levels of iteration� in a
finite number of steps. A somewhat simpler result holds for
the simplest possible double Cayley tree lattice, in which in
each step of iteration each bond branches into two. For such
lattices, if the initial entanglement is large enough, perfect
entanglement can be established at each level of iteration.

Finally, in Sec. VI we consider genuine 2D lattices. First,
using a similar method as in Sec. V we show that for a
sufficiently broad strip of a square lattice, we can convert
connections of a given line along the strip into a line of
perfect singlets, provided, of course, that initially an imper-
fect, but sufficiently large entanglement is present. Second
we reconsider percolation strategies in the limit of large lat-
tices and discuss the example of hexagonal lattice with
double bonds from Ref. �12�, and a triangular lattice with
variable bonds. In the first of these examples quantum mea-
surements lead to local reduction of the SCP, but change the
geometry of the lattice, increasing its connectivity and thus
the classical percolation threshold. In the second example we
use a protocol optimizing the SCP to transform the original
lattice to a new one with the same geometry, but with a
higher probability p of getting a singlet on a bond. Similarly,
we discuss a different type of strategy, where by using the
optimal singlet conversion protocol we transform a square
lattice into two independent square lattices with the same
mean SCP as the initial one. We prove that the classical
probability of connecting a pair of neighboring points in the
initial lattice �two neighboring points from the two lattices�
to another such pair is strictly larger for the case of two
lattices. We conclude then in Sec. VII.

II. PRELIMINARIES: NOTATION AND BASIC NOTIONS

Throughout this work, a pure state of two qubits is repre-
sented by a solid line in the figures and is written �except
when specified� as

��� = ��0�00� + ��1�11� , �1�

where �0+�1=1 and �0��1 �it is assumed that local basis
rotations are performed whenever necessary for the states to
be written in that way�. This defines the Schmidt decompo-
sition of a pure state of two qubits, while �0 and �1 are their
Schmidt coefficients.

A general measurement, also known as positive operator
valued measure �POVM�, is described by n positive opera-
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tors Em�M4�C� satisfying the completeness relation
�m=1

n E
m

=14. Consider a one-repeater configuration such as in
Fig. 1�b� where the connecting states are ��� and ��� and a
measurement M is applied at the repeater. Let

�m = trBC��12 � Em � 12�����	����

be the resulting non-normalized state of the measurement M,
which occurs with a probability pm=tr��m�. We consider in
this paper projective measurements only, i.e., n=4 and Em
= �um�	um� for some normalized state �um�. For such measure-
ments the smallest Schmidt coefficient of �m is �m
=min
eig��̃m�� / pm, where �̃m=trA��m�, or equivalently

�m =
1

2
�1 −�1 −

4 det��̃m�
pm

2  . �2�

Considering the following map from C2 � C2 to M�C ,2�:

�a� = �
i,j=0

1

aij�ij� � â = �a00 a01

a10 a11
 , �3�

one can show that �̃m is now equal to XmXm
† , with Xm

= �̂ûm�̂.
The concurrence of a state � is by definition C���

�2 �det��̂��. Therefore, the concurrence Cm, the smallest
Schmidt coefficient �m, and the outcome probability pm are
explicitly given by

Cm =
2�det�Xm��

pm
=

��0�1�0�1

pm
C�um� , �4a�

�m =
1

2
�1 − �1 − Cm

2 � , �4b�

pm = �
i,j=0

1

�i� j�ûm,ij�2. �4c�

1. Entanglement swapping

A basic operation for propagating entanglement over
larger distances is the so-called “entanglement swapping”
�see Fig. 1�b��. It corresponds to the case in which a Bell
measurement is performed at the repeaters. A Bell measure-
ment is nothing but a measurement in the Bell basis, intro-
duced in what follows.

Starting from the computational basis 
�0� , �1�� of a single
qubit, we define the new basis 
�↑ � , �↓ ��,

��↑�
�↓�  = U��0�

�1�
, U � U�2� , �5�

and the Bell vectors

���� =
�↑↑� � �↓↓�

�2
and �	�� =

�↑↓� � �↓↑�
�2

, �6�

which give a basis in C2 � C2. Two specific bases play a key
role in this paper: the computational or ZZ basis, where the

vectors �↑ � and �↓ � for both qubits are the eigenvectors of
the Pauli matrix 
z, and the XZ basis, where the first basis is
chosen as being the eigenvectors of 
x. Although we could,
in principle, parametrize the Bell states in that way, calcula-
tions are much easier and clearer in the “magic basis” de-
fined as �20�

��̂1,�̂2,�̂3,�̂4� = �12,− i
z,i
y,− i
x���+� . �7�

In this basis, the concurrence of a state ���=�i=1
4 �i ��i� sim-

ply reads C���= ��i=1
4 �i

2�. It follows that the coefficients �i of
a Bell state �whose concurrence is 1 by definition� have all
the same phase; hence we can choose them as being real. Let
a set of four such states 
�m�, so that the matrix ��m,i� be-
longs to SO�4�. Then the probabilities given in Eq. �4c� read

pm = pmin��m,1
2 + �m,2

2 � + pmax��m,3
2 + �m,4

2 � , �8�

with

pmin =
�0�1 + �1�0

2
and pmax =

�0�0 + �1�1

2
. �9�

We emphasize the fact that �given two states � and ��, the
outcome probabilities completely characterize a Bell mea-
surement, since �m depends only on pm for C�um�=1 �see Eq.
�4��.

2. Figures of merit

We describe here three figures of merit used to evaluate
the usefulness of an entanglement distribution protocol: the
concurrence, the singlet conversion probability �SCP�, and
the worst-case entanglement �WCE�. All these figures of
merit take value in the interval �0,1�.

Concurrence. The average concurrence of a measurement
M is defined as

CM = �
m

pmCm, �10�

where Cm is the concurrence of the outcome m and pm is the
corresponding probability.

WCE. The idea of the WCE is to find a measurement
optimizing the entanglement for all its outcomes. Taking the
smallest Schmidt coefficient as the entanglement measure we
define the WCE as

WM = 2 min
m


�m� . �11�

SCP. We consider here the probability of conversion of a
given state into a perfect singlet. A result from majorization
theory �21,22� tells us that a state ��� can be converted into a
singlet by LOCC with maximal probability 2�1 through the
“Procrustean method” of entanglement concentration de-
scribed in �23�. More in general, the LOCC conversion be-
tween entangled pure states of two parties is governed by
majorization theory, as follows from the works by Nielsen
and Vidal �21,24�. Throughout this work, several results from
majorization theory on LOCC transformations between en-
tangled states are used. A short introduction to this topic is
given in Appendix B; more details can be found in Ref. �22�.
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We define the average SCP for a measurement M as

SM = 2�
m

pm�m, �12�

where �m is the smallest Schmidt coefficient of the outcome
m. Since this figure of merit is used for different systems, we
sometimes use the following notation for clarity:

SM
�N���1,0,�2,0, . . . ,�N+1,0� ,

where N means the number of repeaters of a 1D chain con-
sisting of N+1 states �1 ,�2 , . . . ,�N+1, as depicted in Fig.
1�a�.

III. 1D NETWORKS

Before studying complex networks, it is worth looking at
systems made of one or two repeaters only. In fact, some
interesting properties of these small systems can then be used
in more elaborated strategies for larger networks. For in-
stance, the important fact that the SCP does not decrease
after one measurement �Sec. III A 3� allows one to get better
results for the percolation on honeycomb lattices �12�. An-
other important and surprising result is that Bell measure-
ments are not, in general, the measurements that maximize
the SCP �Sec. III B 2�, although they are the best ones for the
average concurrence and the WCE. Previous results on 1D
networks can also be found in Refs. �17,25,26�.

A. One repeater

We consider in this section a system consisting of two
states � and � joined by a single repeater �see Fig. 1�b��. We
first prove a general statement on Bell measurements, and
then describe the measurements that maximize our three fig-
ures of merit.

1. Bell measurements and outcome probabilities

The following result is very useful when trying to maxi-
mize the SCP over the set of Bell measurements �the proof is
given in Appendix C�.

Result 1. Outcome probabilities for a one-repeater Bell
measurement. Let 
xm� be four real numbers that add up to
one and that lie in the interval �pmin, pmax�. Then there exists
a Bell measurement whose outcome probabilities pm are
equal to xm.

2. Maximizing the concurrence and the WCE

It is clear from Eqs. �4a� and �10� that any Bell measure-
ment, i.e., C�um�=1∀ m, maximizes the average concur-
rence, and therefore

Cmax = 2��0�1�0�1. �13�

The result of the maximization of the WCE is summarized in
the following result.

Result 2. Best WCE strategy for one repeater. The maxi-
mum value of W for a one-repeater system is reached by the
Bell measurement in the XZ basis, with

Wmax = WXZ = 1 − �1 − 16�0�1�0�1. �14�

Proof (by contradiction). The Bell states �um� in the XZ
basis are given by the columns of the matrix

MXZ =
1

2�
− 1 1 1 1

1 − 1 1 1

1 1 − 1 1

1 1 1 − 1
� ,

hence pm=1 /4 and 2�m=1−�1−16�0�1�0�1 ∀ m. Now
suppose that there exists a measurement M described by the
set 
Em= �um�	um � �m=1

n , with n�4, such that WM �WXZ. Then
each �m has to be strictly greater than the smallest Schmidt
coefficient of the outcomes in the XZ basis. Thus, from Eq.
�2�

det��̃m� � pm
2 4�0�1�0�1 ∀ m . �15�

Since det��̃m�=�0�1�0�1 �det�ûm��2, the summation over m
of the square root of Eq. �15� yields

�
m=1

n

�det�ûm�� � 2. �16�

But the concurrence of a �normalized� state is smaller than or
equal to 1, hence 2 �det�ûm� �  �um�2. Moreover, taking the
trace of the completeness relation for the operators Em im-
plies �m=1

n �um�2=4. Therefore �m=1
n �det�ûm� � 2, which is in

contradiction with Eq. �16�, and concludes the proof. �

3. Maximizing the SCP

The following result gives the maximum value of the SCP
for one entanglement swapping step.

Result 3. Best SCP strategy for one repeater. The mea-
surement that maximizes S for a one-repeater configuration
is the Bell measurement in the ZZ basis, and

Smax = SZZ = 2 min
�1,�1� . �17�

Proof. Two kinds of outcomes appear when performing a
Bell measurement in the computational basis: two of the out-
come probabilities are equal to pmax, while the other two are
equal to pmin. Putting these values into Eq. �4� one finds the
corresponding smallest Schmidt coefficients as follows:

��pmax� =
�1�1

2pmax
, ��pmin� =

min
�0�1,�1�0�
2pmin

, �18�

whence SZZ=2 min
�1 ,�1�. Consider now that we are al-
lowed to perform some arbitrary unitary not only on BC, but
on ABC. We are in the presence of a bipartite system, and the
results of majorization theory apply: the SCP of this system
is at most 2�1. A similar construction for qubits B, C, and D
tells us that the SCP is at most 2�1, so that the final SCP
cannot exceed twice the minimum of �1 and �1. �

Remark. Setting �=�, one sees that the SCP does not
decrease after one entanglement swapping; this is the “con-
served entanglement” described in �17�.
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B. Two repeaters

We consider a system of three states on which we perform
two consecutive measurements, as shown in Fig. 1�c�, and
we describe those measurements that maximize the three fig-
ures of merit.

1. Maximizing the concurrence and the WCE

The maximization of these two figures of merit is trivial
for a two-repeater configuration once one knows the results
for the one-repeater system. First, any Bell measurement
maximizes the average concurrence of the results of the two
measurements. This will be generalized and proved for any
number of repeaters in Sec. III C 1. Then, in order to maxi-
mize the WCE, we simply have to perform XZ measurements
at both repeaters. In fact, if we perform any other measure-
ment on the first repeater, then at least one resulting state �m
will be less entangled than the XZ results, and this reflects on
the WCE of the second measurement �which has to be a Bell
measurement in the XZ basis from Result 2�.

2. Maximizing the SCP

After the first measurement, we get four resulting states
��m� with probabilities pm. From Result 3 we know that for
any outcome, the second measurement has to be done in the
ZZ basis. Hence, we have to find the first measurement M
that maximizes

SM
�2���0,�0,�0� = 2�

m

pm min
�m,1,�1� . �19�

We first maximize this quantity over the set of Bell mea-
surements �which, as we will see, leads to the best strategy
for a large range of entangled states �, �, and ��, and then
we present some numerical results showing that non-Bell
measurements sometimes provide better results.

Bell measurements. We fix the states �, �, and � and we
consider the SCP as a function of the outcome probabilities
only.

S�
pm�� = �
m

min
f�pm�,g�pm�� � �
m

h�pm� , �20�

where f�p�=2�1p and g�p�= p−�p2−�0�1�0�1. One can
show that g��p��0 and g���p��0∀ p� �pmin, pmax�. A typi-
cal plot of h�p� is shown in Fig. 2, and the value p* at which
the functions f and g cross each other is

p* =
1

2
��0�1�0�1

�0�1
. �21�

It is sufficient to maximize the function over the possible
probability distributions, since Result 1 insures the existence
of a Bell measurement leading to this optimal distribution;
we recall that the probabilities have to be chosen in the in-
terval �pmin, pmax�. Let us give two necessary conditions that
have to be satisfied by the best probability distribution �they
can be proven rigorously, but a look at Fig. 2 may be
clearer�:

�a� If the set 
pm� maximizes S, then all probabilities lie
either to the left of p* or to its right. In fact, suppose, for
example, that p1+2�� p*� p2−2�, and choose p̃1= p1+�
and p̃2= p2−� �with 0���1 as it should be�. The con-
straints on these new probabilities are clearly satisfied if it
was the case before, and a better SCP has been found.

�b� If p1 and p2 are such that p*+2�� p1 p2� pmax
−2�, then the choice p̃1= p1−� and p̃2= p2+� gives rise to a
strictly greater SCP �this comes from the convexity of g�.

It is now simple to maximize the SCP of two repeaters,
and one sees that the value p*, with respect to pmin and pmax,
plays a crucial role in the choice of the best probability dis-
tribution. In fact, we have to distinguish four distinct cases
�see the results in Table I�. We notice that ZZ measurements
lead to the maximum SCP whenever p* pmin, while the XZ
ones are the best strategy for p*�1 /4. So far, we have maxi-
mized the SCP for two repeaters supposing that the first mea-
surement was to be done on the states � and �. But what
happens if we start from the right side? It appears that the
maximum SCP depends, in general, on the order of the mea-
surements and that performing the first measurement where
the states are more entangled yields better results.

General measurements (numerical results). The question
is to check if some non-Bell measurements yield a better
SCP than the results of the last paragraph. Since the concur-
rence of the states used for entanglement swapping can now
take any value between 0 and 1, we cannot consider S as a
function of the outcome probabilities only. But for a fixed
concurrence C�1 one sees that

ḡ�C,p� � p − �p2 − �0�1�0�1C2 � g�p� ∀ p .

Writing the corresponding variables of non-Bell measure-
ments with a bar, we have that p̄*� p* and ḡ�C , p̄*�
�g�p*�. Therefore, one can check that Bell measurements
are indeed the best ones, except, possibly, when pmin p*

 �1− pmax� /3. The key fact about Bell measurements in that
case is that we cannot choose three outcome probabilities to
lie on p*, since the fourth one would be greater than pmax.
But the range of possible outcome probabilities depends on

p

f(p) g(p)

h(p)

p∗

2γ1p
∗

FIG. 2. Representation of the function h�p�=min
f�p� ,g�p��
governing the SCP after Bell measurements in a two-repeater
configuration.

TABLE I. Maximization of S�2� over Bell measurements �see the
text for details�.

Value of p* 
pm� maximizing S�2�

p* pmin 
pmin, pmin, pmax, pmax�
pmin p* �1− pmax� /3 
p*, p*, pmax,1−2p*− pmax�
�1− pmax� /3 p*1 /4 
p*, p*, p*,1−3p*�

p*�1 /4 
1 /4,1 /4,1 /4,1 /4�
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the concurrence: for example, from Eq. �4c� and for
C�um�=0, we have that p̄m� ��1�1 ,�0�0�, or more generally,

p̄m � �p̄max, p̄min� � �pmax,pmin� . �22�

Hence, and this is confirmed by numerical results, a better
strategy is to perform a measurement such that three out-
comes probabilities are equal to p̄*, and that the concur-
rences of the states are the largest ones satisfying p̄max=1
−3p̄*. Our numerical evidence shows that Bell measure-
ments do not always maximize the SCP �see Fig. 3�.

C. Large 1D chains

We consider the system of Fig. 1�a� that consists of N
repeaters joining N+1 states. For simplicity, we choose the
states �i as being identical: ��i�= ���∀ i. We show in this
section which strategies yield the optimal solution for the
concurrence and the WCE, and for the SCP we give an upper
bound to its maximum value and some results for XZ and ZZ
measurements.

1. Maximizing the concurrence and the WCE

A direct generalization of Eq. �4a� for N repeaters yields
for the concurrence �27�

C�N� = �

mi�

2�det�X
mi�
�� , �23�

where X
mi�
= �̂ûm1

�̂¯ ûmN
�̂, and the states �umi

� are associ-
ated with the measurement result mi of the ith repeater. Then
the maximization of C�N� reads

max
M


C�N�� = �det��̂��N+1 max
M ��


mi�
2N+2

� �det��̂ûm1
�̂ ¯ ûmN

�̂��� = �2 det��̂��N+1,

�24�

where �̂=12 /�2 corresponds to a maximally entangled state.
For states � which are not perfect singlets, the concurrence
decreases exponentially with N.

Cmax
�N� � �4�0�1�N/2, N � 1. �25�

The same arguments as for the systems of one or two
repeaters hold for the WCE, so that XZ Bell measurements

have to be performed on each repeater in order to maximize
it.

2. Maximizing the SCP

A similar formula as Eq. �23� for the average SCP is

S�N� = �

mi�

2 min
eig�Xmi
Xmi

† �� . �26�

Contrary to the maximization of the concurrence, we cannot
find here such an easy way to calculate the maximum value
of S, but we can already say a few words about the SCP for
a 1D chain with a large number of repeaters:

�a� Since S is always smaller than or equal to C, it is
upper bounded by

Smax
�N� � �4�0�1�N/2. �27�

�b� After N�1 measurements, the entanglement of the
resulting states is expected to be, in average, very small, so
that the SCP and the concurrence could be related by S
�C2. Hence we may have the asymptotic behavior S�N�

��4�0�1�N.
Even if we do not have the protocol that maximizes the

SCP, we present here three specific strategies, as the results
are instructive. The first and simplest one consists of trying
to convert each state into a singlet, and then to establish a
perfect connection between the end qubits of the chain. In
the second strategy we perform XZ measurements at all sta-
tions, and from Sec. III A 2 we know that all resulting states
have the same amount of entanglement. We indeed find the
exponential decay of the SCP related to the one of the con-
currence. Finally, in Appendix D, we derive the explicit for-
mula for ZZ measurements on a chain of any number of
repeaters, which yields a decay of the SCP which is quite
close to the upper bound given in Eq. �27�. The asymptotic
behaviors are summarized in Table II.

IV. SIMPLEST 2D NETWORK: A SQUARE

The previous section contains our main results for 1D
networks. In the remainder of this work, we analyze lattices
of dimension larger than one. We study in this section a
square made of four identically entangled states �see Fig. 4�.
This is clearly one of the simplest possible 2D networks. The
operations we perform consist of three steps: a first measure-
ment M1 yielding some outcome �, then a measurement M2
depending on � and giving another state �, and finally, a
distillation of these two states to get a final state �. The goal
is of course, to get � as entangled as possible, given the
states �.

α0

S
(2)
max(α0, β0, γ0)

0.2

0.4

0.5 a1 a2 1

FIG. 3. SCP for a system of two repeaters, with �0=�0=0.7.
Numerical results �dashed line� show that there exists a better strat-
egy than Bell measurements �solid line� for �0� �a1 , ,a2�. The val-
ues a1 and a2 are such that p*�a1�= �1− pmax�a1�� /3 and p*�a2�
= pmin�a2�.

TABLE II. Asymptotic behavior of the SCP for a 1D chain of
N�1 repeaters. Three specific measurement protocols are studied:
conversion of all states into singlets �CS�, XZ and ZZ
measurements.

CS XZ ZZ

S�N� �2�1�N ��4�0�1�N �
1

�N
�4�0�1�N/2
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1. Distillation

Majorization theory �22� tells us how entangled the state
� can be. Without loss of generality we choose �0��0 and
the majorization criterion reads

��0�0,�0�1,�1�0,�1�1� � ��0,�1,0,0� , �28�

whose only nontrivial inequality is �0�0�0 �see Appendix
B�. Since we are looking for a state � that is as entangled as
possible, its greatest Schmidt coefficient is

�0 = max�1

2
,�0�0� . �29�

2. Maximizing the figures of merit

Arguments used for 1D networks still hold here, so that
one has to perform Bell measurements and XZ measurements
to maximize the concurrence and the WCE, respectively. It is
worth pointing out that a perfect singlet � can be established
with probability one after two XZ measurements followed by
optimal entanglement LOCC transformation if � satisfies

�0  �0
* =

1 + �1 − �2��2 − 1�
2

� 0.65. �30�

Thus we consider than � is less entangled than �* since
we already know how to get a singlet for �0�

0
*. We pro-

ceed in two steps for maximizing the SCP: we first look at
the subproblem of maximization over the measurements M2
for a given outcome �, and then we provide some numerical
results for the whole square.

Second measurement. We first notice that a singlet can be
obtained by an XZ measurement with probability one if �0
�0

���1+�1− �4�0�1�2�−1. Then, labeling by m the result-
ing states � of the measurement M2, we can write the func-
tion to be maximized as

SM
� = 2�

m

pm�1 − max�1

2
,�0�m,0�

= 2�1 + �02�
m

pm min��m,1,
�0 − �1

2�0
�

� Smax
�0� ��0� + �0SM

�2���0,�0,
1

2�0
 , �31�

so that all results of Sec. III B can be applied. The three
quantities pmin, pmax, and p* used in that section are now
pmin=�0�1, pmax= ��0

2+�1
2� /2, and p*=�0�1�0 / ��0−�1�.

Since p* is greater than pmin for all states � and �, it follows

that Smax
� is reached by Bell measurements except when

p*� �pmin, �1− pmax� /3�.
First measurement. The function to maximize over the

measurements M1 is

SM1

� = �
m

pmSmax
� ��m,0,�0,�0� . �32�

For Bell measurements, since the Schmidt coefficient �m,0
depends on pm only, we can write SM1

� =�mh�pm�. Here we
make a slightly abuse of notation, since we again use h�p�, as
in Sec. III B 2. Actually, the shape and properties of the func-
tion h�p� discussed here and in Sec. III B 2 are very similar.
Therefore, all arguments used in that section for the maximi-
zation of the SCP apply here, too. The plot of h�p� is shown
in Fig. 5. The quantity that corresponds to p* is now written
p� and its value is

p� =
�0�1

2��0
��1

�
,

where �1
��1−�0

�. With these definitions, one can check that
for all �0 greater than �

0
*, we have pmin p���0�1 /4 and

that p�→pmin when �0→1, whence the best measurements
for nearly unentangled states � are the ZZ ones. As for the
system of two repeaters, performing Bell measurements is
not the best choice when it is not possible to get three of the
four outcome probabilities to be equal to p� �but this is pos-
sible when �0�0

��0.664 �see Fig. 6��. Finally, we summa-
rize the results in Table III, and the similarity with Table I is
immediate.

V. HIERARCHICAL LATTICES

In this section we will directly apply the previous results
to study the establishment of entanglement over large scales
in lattices with hierarchical geometry. These are lattices that
iterate certain geometric structures, so that at each level of
iteration the number of nodes or the number of neighbors

α

β
ϕϕ

ϕϕ
ψM1

M2

FIG. 4. Operations on a square to obtain an entangled pair on
the diagonal: first two measurements, then distillation of the result-
ing states � and �.

1

p

h(p)

pmin p� 0.25 pmax

FIG. 5. Typical plot of the function h�p� governing the SCP of
the square.

ϕ∗
0 ϕ�

0

0.9

1

ϕ0

S�
max

FIG. 6. SCP for a square made of four states �. Numerical
results �dashed line� show that Bell measurements �solid line� do
not lead to the optimal solution for �0����0.664.
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changes. Unfortunately, we do not know how to find optimal
strategies for such lattices; we restrict our considerations to
show that one can establish perfect entanglement in a finite
number of steps at some iteration level. This perfect en-
tanglement can be swapped further to the lowest levels of
iteration, i.e., to the largest scales, which can be considered
as the largest geometrical distances.

A. “Diamond” lattice

We start considering the so-called “diamond” lattice,
which is obtained by iterating the operation presented in Fig.
7, in which a single bond �two qubits and one entangled
state� is replaced by four bonds forming a diamond shape
�four pairs of qubits and four entangled states�. We prove that
for sufficiently large initial entanglement, one can establish
perfect entanglement on large scales �i.e., on some lower
levels of iteration� in a finite number of steps.

We assume that the lattice is formed by very many itera-
tions, and that all bonds correspond to entangled states ���
=�0 �00�+�1 �11�. Our aim is to perform measurements in a
recursive way and demonstrate that for sufficiently small �0
it is possible to establish perfect entanglement on the lowest
level of the iteration hierarchy, i.e., between the “parent”
nodes A and B. In order to keep the form of the network
unchanged during the recursive measurement we will apply
the WCE strategy to the nodes analogous to C and D, start-
ing from the highest �last� iteration level. After applying
WCE we obtain with probability 1 a pair of entangled states
���=�0 �00�+�1 �11�, with �0= �1+�1−16�0

2�1
2� /2. This pair

can then be distilled with probability 1 to a new two-qubit
entangled state ���� �see Eq. �29�� as follows:

�0� = max�1

2
,
1

4
�1 + �1 − 16�0

2�1
2�2� .

Denoting now the SCP by E=2�1, we rewrite the recursion
as

E� = 2�1 − �0
2� = 1 + �2 − E�2E2/2 − �1 − �2 − E�2E2.

This recursion �see Fig. 8� has one nontrivial unstable fixed

point Eth, and two trivial stable fixed points Ẽ=0 and Ẽ=1.
The latter is achieved in a finite number of steps provided the
initial E�Eth�0.349. Note that Eth is strictly smaller than
E*=2�1−�

0
*� from Eq. �30�. For E�E*, E� is equal to 1,

i.e., the singlet is achieved in one step.

B. “Tree” lattice

Similar results hold for the simplest possible “tree” lat-
tice: a double Cayley tree lattice with a branching factor of
two �see Fig. 9�a��. Let us denote the initial SCP of all bonds
by E0. The strategy is depicted in Fig. 9�b�: the nodes in the
middle of the tree perform the WCE. This prepares two two-
qubit states between the neighboring nodes with the en-
tanglement, measured by the SCP, equal to E1. These two
states are then converted with probability 1 into a two-qubit
state with E=min
1,2�1− �1−E1 /2�2��, which will undergo
recursive transformations �Fig. 9�b��. We perform then the
WCE on one of the three connected bonds, and obtain
EI=1−�1−E0�2−E0�E�2−E�. Then, the WCE is applied
to the remaining pair of bonds yielding

TABLE III. Maximization of S� over Bell measurements �see
the text for details�.

Value of p* 
pm� maximizing S�

�0→1 
pmin, pmin, pmax, pmax�
�0��0

� 
p� , p� , pmax,1−2p�− pmax�
�

0
*�0�0

� 
p� , p� , p� ,1−3p��
�0�

0
* 
1 /4,1 /4,1 /4,1 /4�

AA

BB

C D

FIG. 7. The diamond lattice is formed by iterating the following
operation: a single bond �two qubits and one entangled state� is
replaced by four bonds forming a diamond shape �four pairs of
qubits and four entangled states�. After K iterations, the nodes A, B,
C, D have 2K links, the nodes on the next level 2K−1 links, etc.
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FIG. 8. Recursion relating E on the higher level of lattice itera-
tion to E� at the lower level of iteration in the diamond lattice. Each
iteration consists of the following steps: �i� WCE and �ii� the two
resulting two-qubit states are transformed with probability one into
a two-qubit state of the same SCP.

(a)

(b)

E

E

E0

E0

E0

E0

E0

E0

E0

EI

EI

EII

EII
E′

FIG. 9. �a� Tree configuration; �b� The nodes in the middle
perform WCE. This creates two two-qubit states between the neigh-
boring nodes. These states are transformed into a two-qubit state of
the same SCP. The process is iterated until a perfect singlet is es-
tablished between the two ends of the tree.
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EII=1−�1−E0�2−E0�EI�2−EI�. Finally, the optimal en-
tanglement LOCC conversion is applied to the pair of EII
bonds obtained from the two different but neighboring
branches of the tree, yielding, as follows from majorization,
E�=min
1,2�1− �1−EII /2�2��. The recursion relations can be
rewritten as

E� = F�E;E0� . �33�

This recursion depends explicitly on E0. It is easy to see that
since the WCE does not increase the SCP, the recursion �33�
will have: �i� only one trivial stable fixed point Ẽ=0 if E0
�Eth, and �ii� three fixed points otherwise: stable 0, unstable

Ẽ, and stable 1 otherwise. Here if we start with E�Eth
we will end up in one step with E�=1. The threshold
value is obtained by solving the equation 1=2�1− 
1− �1
−�1−E0

2�2−E0�2� /2�2�, and is given by

Eth = 1 − �1 − �2��2 − 1� � 0.7. �34�

VI. GENUINE 2D LATTICES

In this section we consider genuine 2D lattices when the
number of nodes is big. On the one hand, we apply the
methods and observations of the previous sections to these
large lattices. On the other hand, we reconsider the various
variants of the methods employing classical and quantum
percolation techniques.

A. “Centipede” in square lattice

As another example of the power of recursive measure-
ment methods of the previous section, we consider a wide
strip of a 2D square lattice and the “centipede” figure within
it �see Fig. 10�a��. Let us denote the initial entanglement as
E0, and the entanglement at the end bond of a “leg” by E. We
then apply the following measurement scheme to the ends of
each of the legs of the centipede �see also Fig. 10�: �i� We
apply the WCE to E0 and E, replacing these two bonds by
one with EI=1−�1−E0�2−E0�E�2−E�; �ii� we repeat it with
the other vertical bond obtaining thus a pair of states at the
horizontal end of the leg: one with entanglement E0 and the

other with EII=1−�1−E0�2−E0�EI�2−EI�; �iii� the resulting
pair is then distilled with probability 1 to a two-qubit state
with E�=min
1,2�1− �1−E0 /2��1−EII /2���=F�E ;E0�. This
situation is somewhat similar to the case of the tree lattice
from the previous section, but not completely. The recur-
rence relation depends explicitly on E0 and has always a

nontrivial stable fixed point Ẽ�E0. This fixed point, how-
ever, is strictly smaller than 1, when E0 is small. In the first
case, although we do concentrate more entanglement along
the “spine” we still have to face the problem that the spine is
a 1D network, and will exhibit an exponential decrease of
probability of establishing the perfect entanglement for large
distances �12�. On the other hand, the stable fixed point is

simply Ẽ=1, provided E0 is large enough. In this case a
perfect singlet is achieved in a finite number of steps, and the
singlets from all legs can be concentrated at the spine of the
centipede with probability 1. Obviously, all that implies that
the width of the strip of the 2D lattice �equal to twice the
length of the centipede leg� can be finite: it must be just
larger than the number of steps necessary to get a perfect
singlet.

The condition for the threshold value of E0 is easy to
derive: we have to put E=1 in the above recurrence and
solve 1=2
1− �1−Eth /2��1+�1−Eth

2 �2−Eth�2� /2�, which
gives Eth�0.649 �Fig. 11�.

B. Percolation strategies

In Ref. �12� we have pointed out that one possible strat-
egy for entanglement distribution is to convert locally all
bonds with probability p into singlets and then perform en-
tanglement swappings. This strategy can then be linked to
classical bond percolation theory, such that all the known
results of this field can be applied to our quantum scenario
�see also Appendix A�: indeed, with probability p a perfect
connection is established between the nodes, otherwise no
entanglement between them is left. We name this strategy
classical entanglement percolation for obvious reasons. The
critical amount of entanglement such that long-distance en-
tanglement distribution is possible simply follows from the
comparison of the optimal probability for singlet conversion,

(a)

(b) E

E0

E0

E0E0 E0

E0

EI

EII E′

FIG. 10. �a� “Centipede” with its “legs” and “spine.” �b� Recur-
sive measurement scheme; note that the method can be equally well
applied also in higher dimensions.
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FIG. 11. Recursion relation for the centipede lattice. Only when
the entanglement E0 is larger than a threshold Eth, a trivial stable
point at E=1 appears.
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resulting from majorization theory, with the classical perco-
lation threshold of the corresponding lattice. That is, when-
ever this singlet conversion probability is larger than the
threshold, long-distance entanglement is possible via classi-
cal entanglement percolation. One should stress that classical
percolation strategies work for any lattice and dimension.
Nevertheless, every percolation strategy relies on the conver-
sion of all bonds to singlets with a certain probability p, and
then a perfect entanglement between two nodes on the large
scale is established with a probability �2�p�. The latter for-
mula expresses the fact that both nodes have to belong to the
percolating cluster, which happens for each of them indepen-
dently with probability ��p� �see Appendix A and �13��. This
probability is always smaller than one, except for the trivial
case p=1.

The natural question is whether the thresholds defined by
classical percolation theory are optimal or entanglement per-
colation represents a related but different theoretical problem
where new bounds have to be obtained. This is of course
equivalent to determining whether the measurement strategy
based on local SCP is optimal in the asymptotic regime.
Here, we construct several examples that go beyond the clas-
sical percolation picture, proving that the classical entangle-
ment percolation strategy is not optimal. The key ingredient
for the construction of these examples is the measurement
strategy previously obtained for the one-repeater configura-
tion that maximizes the SCP.

1. Honeycomb lattice with doubled bonds

The first example �already discussed in Ref. �12�� consid-
ers a honeycomb lattice where each node is connected by
two copies of the same two-qubit state ��� �see Fig. 12�a��.

The simplest strategy consists in trying to convert all
bonds of the doubled honeycomb lattice into singlets, and
then applying entanglement swapping. The percolation
threshold of this doubled lattice is not difficult to calculate:
at the critical point, the probability that, at each edge, at least
one conversion is successful has to be equal to the percola-
tion threshold of the simple honeycomb lattice; if both con-
versions are successful we simply discard one pair. We thus
have pc

˝=1− �1−2�1�2, hence the percolation threshold is
�see Table IV�

2�1 = 1 −�2 sin� �

18
 � 0.411. �35�

We define the classical entanglement percolation strategy as
�i� converting in the best possible way all bonds shared by
two parties into one singlet and �ii� applying entanglement
swapping to those pairs where a singlet was obtained. If, as
above, the Schmidt coefficients of the two-qubit state are
�0��1, the SCP of ����2 is given by pok=2�1−�0

2�. We
choose this conversion probability to be equal to the perco-
lation threshold for the honeycomb lattice and get

2�1 = 2�1 −�1

2
+ sin� �

18
 � 0.358. �36�

We now show that another strategy yields a better percola-
tion threshold: some of the nodes �see Fig. 12�a��, perform
the optimal strategy for the SCP, mapping the honeycomb
lattice into a triangular lattice, as shown in Fig. 12�b�. What
is important is that the SCP for the new bonds is exactly the
same as for the initial state ���, that is, 2�1. We choose it to
be equal to pc

�, so that

2�1 = 2 sin� �

18
 � 0.347, �37�

which proves that the classical entanglement strategy is not
the best one.

2. Asymmetric triangular lattice

The second type of examples, although less symmetric, is
generic and has a totally different character than the previous
one. For simplicity, we show the argument in the case of a
triangular lattice, but the same reasoning can be applied to
other geometries. Consider the triangular lattice of Fig.
13�a�. Solid lines correspond to two-qubit pure states ���
while dashed lines correspond to states ��̃� that are less en-
tangled, i.e., �̃0��0. We choose the first state such that pok

=2�1 satisfies pc
�� pok��pc

�. If ��̃�= ���, the classical en-
tanglement percolation strategy works. However, we choose
this second less entangled state such that its SCP is small
enough to make the classical entanglement percolation im-
possible. This state always exists. Indeed, note that when
�1→0, these states can simply be removed from the lattice,
and classical entanglement percolation fails because of
pok

2 � pc
�. It is now rather straightforward to construct a suc-

cessful entanglement percolation strategy: the state ��̃� is dis-
carded and the optimal strategy for the one-repeater configu-
ration and the SCP is performed. The lattice is then mapped
into a new triangular lattice keeping the conversion probabil-

(a) (b)

FIG. 12. Each node is connected by two copies of the same
two-qubit state ���. The nodes marked in �a� perform the measure-
ment optimal according to the SCP. A triangular lattice �b� is ob-
tained where the SCP is the same as for the state ���. Classical
entanglement percolation is now possible in the new lattice.

TABLE IV. Classical �bond� percolation thresholds pc for some
regular lattices.

Lattice pc

Triangular pc
�=2 sin�� /18��0.347

Square pc
�=0.5

Honeycomb pc
˝=1−2 sin�� /18��0.653
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ity of the first, more entangled state �see Fig. 13�b��. Classi-
cal entanglement percolation can now be applied to this new
lattice, since pok� pc

�.

C. Doubling the square lattice

The final example deals with a square lattice and has yet
another character. Here we replace every second pair of hori-
zontal bond by a single one using the optimal SPC strategy,
which as we know from Sec. III does not change the SCP on
average, replacing, however, pure states by a known mixture.
The same is done with every second pair of vertical bonds.
In effect we replace the original square lattice by two disjoint
lattices with the lattice constant twice bigger than the origi-
nal one, but the same SCP �see Fig. 14�. Now we are inter-
ested in establishing entanglement between any of the two
neighboring nodes A, A� and B or B�, at large distances.

In the case of doubled lattices the calculation is simple:
the pairs �A ,B� and �A� ,B�� belong to two disjoint lattices,
and the probability that, say, �A ,B� belongs to the percolating
cluster is equal asymptotically to �2�p�. The probability that
at least one of the pairs belongs to the percolating cluster is
thus

Pdouble = 1 − �1 − ��2 = �2�2 − �2� . �38�

This probability has to be compared with the probability that
at least one of the pairs �A ,B�, �A� ,B�, �A ,B��, or �A� ,B��
belongs to the percolating cluster in the original square lat-

tice. The latter probability is asymptotically �2, where � is
the probability that A or A� �or equivalently B or B�� belongs
to the percolating cluster C. Thus we have

� = P�A or A� � C� = P�A � C� + P�A� � C� − P�A,A� � C� .

In order to estimate the last term in the above expression, we
use the celebrated Fortuin-Kasteleyn-Ginibre �FKG� inequal-
ity ��28�, see also �13��. To state it, we first define an event
described in terms of a percolation configuration to be in-
creasing if it has the property that, once it holds for a certain
bond configuration, it holds for all configurations obtained
by adding bonds to the initial one. FKG inequality says that
any two such events are positively correlated. The events

A�C� and 
A↔A�� �“A and A� are connected by a path of
maximally entangled bonds”� are clearly increasing and,
since their intersection is the event 
A ,A��C�, it follows that

P�A,A� � C� � P�A � C�P�A ↔ A�� . �39�

Denoting P�A↔A�� by �, we thus have �2�2�2−��2.
Therefore, doubling the square lattice is a better strategy than
the classical percolation, i.e., �2 Pdouble, whenever

�2 − ��2  2 − �2. �40�

We believe that this inequality is fulfilled for all p, but we
have not been able to prove it. Below we present a computer
assited proof that it holds when p is just above the percola-
tion threshold pc

�=0.5, i.e., when � tends to zero. Setting �
=0 in the inequality �40�, we immediately see that proving
Eq. �40� in this limit requires one to demonstrate that 2−�
�2. We may try to estimate � from below by considering
the six shortest trajectories connecting A and A�: the most
direct, two two-bond paths, and the two pairs of four-bond
paths around the adjacent squares. One finds

� � 2�p2 + 2p4 − 2p5� − �p2 + 2p4 − 2p5�2.

Unfortunately, for p= pc
�=1 /2 this estimate is too small and

thus not sufficient to prove Eq. �40�, since it gives only 2
−��1.473. . . . One can improve the estimate analytically by
adding further paths connecting A and A�; this procedure
becomes, however, technically tedious. We have therefore
turned to the standard numerical Monte Carlo method of
calculating the transition probability from A to A�. The
method we used generates the shortest paths �like the ones
used for calculating the above estimate� automatically, while
the longer ones are generated using the Monte Carlo sam-
pling. For p� pc

� the convergence is exponential: if we plot a
subsequent estimate of � as a function of the maximum clus-
ter size allowed in the Monte Carlo sampling, it approaches
the final value exponentially fast for large clusters. As ex-
pected, the convergence is algebraic at p= pc

�: the estimate of
� approaches its final value as a power of the cluster size. A
power law fit and a comparison with the values just above
the percolation threshold give with a very good accuracy
��0.687 and hence 2−��1.313��2. Q.E.D.

This is yet another result which does not have a classical
analog, showing how quantum mechanical measurements
can improve the classical percolation strategy.

(a) (b)

FIG. 13. The triangular lattice consists of two different en-
tangled states ��� and ��̃� for the solid and dashed lines, respec-
tively. The less entangled states ��̃� are discarded and some of the
nodes perform the optimal measurement according to the SCP. A
new triangular lattice is obtained, governed by the SCP of ���.

(a) (b)

A

A′

FIG. 14. �a� Measurements necessary to double the square lat-
tice: the marked nodes apply the optimal one-repeater transforma-
tion along the vertical and horizontal directions. �b� Resulting pairs
of disjoint square lattices with lattice constant doubled; we want to
establish perfect entanglement between any two neighboring points
A, A� versus B and B�. A and A� �B and B�� are neighbors but
belong to different lattices.
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VII. CONCLUSION

In this paper, we have considered the problem of en-
tanglement percolation through pure-state quantum net-
works. We have first focused our investigations on small
quantum networks. Even for these particularly simple sys-
tems, interesting and unexpected properties have been
pointed out. One of the main results is the description of a
Bell measurement by its outcome probabilities only �Result
1�. This has allowed us to maximize the different figures of
merit introduced at the beginning of the paper. We have
shown, then, that Bell measurements do not yield in general
the optimal protocol, even for a chain consisting of only two
repeaters.

The results for small lattices have later been used as
building blocks for entanglement percolation protocols in as-
ymptotically large lattices. We have provided several ex-
amples illustrating some of the properties characterizing
these lattices: recursive relations, classical entanglement per-
colation, and examples of lattices where quantum effects
allow one to go beyond classical percolation.

In general, little is still known about the problem of en-
tanglement percolation, that is, the distribution of entangle-
ment through quantum networks. In the pure-state case, it
would be interesting to derive lower bounds to the amount of
entanglement between the nodes such that entanglement per-
colation is possible. The main question, however, is to ex-
tend these results to the mixed-state scenario, providing ex-
amples of entanglement percolation protocols for lattice with
mixed-state bonds.
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APPENDIX A: CLASSICAL PERCOLATION

Classical percolation is perhaps one of the most funda-
mental examples of critical phenomenon, since it is a purely
statistical one �13�. At the same time it is one of the most
universal ones, since it describes a whole variety of physical,
biological, or ecological processes �14�. In bond percolation
we consider typically a regular lattice of nodes connected by
random bonds, the probability of having a bond between two
neighboring nodes being p. For an infinite lattice of a given
dimension, one would like to know whether an infinite open
cluster exists, that is, whether there is a path of connected
points of infinite length through the lattice. It turns out that
this infinite cluster appears if, and only if, the probability of
connection p is larger than a critical threshold pc, which

depends on the lattice. The values of pc for some commonly
used lattices are given in Table IV.

A quantity of primary interest very related to the percola-
tion threshold is the percolation probability ��p�, being the
probability that a given node belongs to an infinite open
cluster. Clearly, ��p�=0 for p� pc, while ��p��0 for p
� pc. Another quantity of direct interest for us is the two-
point connectivity function ��x ,y�, which gives the probabil-
ity that x ,y belong to the same open cluster of bonds. Above
pc, this probability is �2�p�; below it decays exponentially;
for instance, for a hypercubic lattice in d dimensions, it be-
haves as ��0,x� �1−��p���x�, where ��p� is the mean cluster
size �which is finite below pc�, and �x� is the number of edges
�bonds� in the shortest path from 0 to x.

Connectivity functions concern probabilities in an infinite
network. For us it is more natural to assume a finite size
network, and paths that join the input and output ports and
lie within the finite network. This is related to the so-called
crossing probabilities, which have been intensively studied
in the last years in 2D, using conformal invariance at criti-
cality �for a review, see �29��. Here, a lot of exact results are
known; for example, the celebrated Cardy �30� formula says
that the crossing probability in the triangular lattice from a
vortex of an equilateral triangle to a part of its opposite edge
of relative length a, is simply a. Generalization of this result
to other geometries using conformal invariance is known as
Cardy-Carleson law.

APPENDIX B: LOCC TRANSFORMATIONS AND
MAJORIZATION THEORY

Consider two pure states ��1� and ��2� in a bipartite sys-
tem. Can ��1� be transformed into ��2� by LOCC in a deter-
ministic way? The solution to this question was obtained in
1999 by Nielsen, who noticed a connection between this
problem and majorization theory. Based on this connection,
Vidal extended Nielsen’s results, obtaining the optimal prob-
ability for LOCC conversion between states whenever a de-
terministic transformation is impossible �21�. In this Appen-
dix, we review the main results on the connection between
majorization theory and LOCC transformations between bi-
partite pure states �for more details, see �22��. This formal-
ism is extensively employed in many of the LOCC protocols
described in this work.

Let us start by introducing the concept of majorization.
Consider two d-dimensional real vectors, v� = �v0 , . . . ,vd−1�
and w� = �w0 , . . . ,wd−1�, whose components are positive and
sum up to one, and where the components of both vectors are
sorted in decreasing order. Then v� is said to be majorized by
w� , denoted by v� �w� , whenever

v0  w0

v0 + v1  w0 + w1

]
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v0 + ¯ + vd−2  w2 + ¯ + wd−2, �B1�

while, of course, �ivi=�iwi=1 because of the normalization.
Supermajorization is a related notion that is also relevant in
our context. Consider the same vectors as above but now
with components in increasing order. We denote these com-
ponents by vi

↑ and wi
↑, where vi

↑=vd−i−1 and similarly for w.
The vector v� is now submajorized by w� , denoted by v��ww�
when

�
i=0

k

vi
↑ � �

i=0

k

wi
↑, �B2�

for all k=0, . . . ,d−1. Here, we do not impose any normal-
ization on the vectors.

Coming back to our initial question on the LOCC trans-
formation between pure states, ��1� can be transformed into
��2� with probability one whenever �� �1 ��� �2, where �� �i is
the vector of Schmidt coefficients of the state ��i�. Moving
now to probabilistic transformations, the optimal probability
for LOCC conversion between the two states is given by the
maximum value of p such that �� �1�wp�� �2. We refer the
interested reader to the original references for details.

As an application of this formalism, and because of its
importance in relation to this work, consider the transforma-
tion of a state ����Cd � Cd of Schmidt coefficients
�� �= ��0 , . . . ,�d−1�, in decreasing order, into a singlet. Then,
the optimal probability of transformation reads

p = min
2�1 − �0�,1� , �B3�

which easily follows from Eq. �B2�.

APPENDIX C: PROOF OF RESULT 1

We prove here that there always exists a Bell measure-
ment which yields outcome probabilities pm equal to xm,
when these values add up to one and lie in the interval
�pmin, pmax�.

Proof (by contradiction). Let us write 
�m� the four states
of the Bell measurement in the magic basis. Because the
matrix ��m,i� is orthogonal, the conditions on x are clearly
necessary. In fact, we know from Eq. �8� that pm= pminkm
+ pmax�1−km� with km� �0,1�. One of the four equations of
the system 
pm�= 
xm� will be dependent on the other three: if
we can find three orthogonal vectors �m such that pm=xm for,
say, m=1, 2, 3, then the fourth one is fixed �up to a sign�
with, obviously, p4=x4. Let us write these three states �m as

�m = „
�km cos��m�,�km sin��m� ,

�1 − km cos��m�,�1 − km sin��m� ,

where km= �pmax−xm� / �pmax− pmin�. By construction, these
vectors are normalized and satisfy pm=xm. We now have to
prove that there always exist some angles �m and �m such
that these three vectors are orthogonal. Without loss of gen-
erality we order the k’s such that 1�k1�k2�k3�k4�0.
Since the probabilities add up to 1 and that pmin+ pmax=0.5
we have

k1 + k2 + k3 + k4 = 2. �C1�

Introducing the notations km� �1−km, �a��1−�2, �b��1
−�3, �a��1−�2, �b��1−�3 and using the identity
cos�x�cos�y�+sin�x�sin�y�=cos�x−y�, the conditions of or-
thogonality read

0 = �k1k2 cos��a� + �k1�k2� cos��a� ,

0 = �k1k3 cos��b� + �k1�k3� cos��b� ,

0 = �k2k3 cos��a − �b� + �k2�k3� cos��a − �b� . �C2�

The cases km=0 or km=1 for some m can be trivially solved,
so we consider km�0 and km� �0. We have four parameters
�a,b and �a,b which can be freely chosen in the interval
�0,��, but the two inequalities �k1k2��k1�k2� and �k1k3

��k1�k3� impose the constraints �a� ��
a
* ,�−�

a
*� and �b

� ��
b
* ,�−�

b
*�, with �

a,b
* ��0, �

2
� such that �k1k2 cos��

a
*�

=�k1�k2� and �k1k3 cos��
b
*�=�k1�k3�. Thus cos��a−�b�

� �−1,1� and cos��a−�b�� �−cos��
a
*+�

b
*� ,1�. Then, one

can verify that there always exists at least one solution of
Eq. �C2�, except when −�k2k3 cos��

a
*+�

b
*���k2�k3�, which

never happens. In fact, suppose that this last inequality
holds and rewrite it in terms of k1, k2, and k3 only. After
some tedious algebra and using some trigonometric iden-
tities, one finds that the inequality k1+k2+k3�2 holds, but
this is in contradiction with Eq. �C1�, which concludes the
proof. �

APPENDIX D: SCP OF ZZ MEASUREMENTS ON A 1D
CHAIN

Even if the number of outcomes grows exponentially with
the number of repeaters, one can keep track of all of them in
an efficient way. In fact, after any number nN of entangle-
ment swappings in the ZZ basis, any possible resulting state
has the form �up to local unitaries�

�m� �
1

��0
m + �1

m
���0

m�00� + ��1
m�11��, m � N .

We prove this by induction on n, the case n=0 corresponding
to the initial state m=1. Suppose that the result holds and
that we got the state �m� after n�N measurements. It is easy

n = 0 n = 1

00
1

1
2

2
p+(0)

p−(0)

p+(1)

p+(1)

p−(1)

p−(1)

FIG. 15. “Tree view” of the labels m and their corresponding
probabilities after the first two measurements. For symmetry, we
choose the root of this tree corresponding to n=−1.
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to show from Eq. �18� that an entanglement swapping in the
ZZ basis on �m� � ��� is described by

�m� � � �m + 1� with probability p+�m�
��m − 1�� with probability p−�m� ,

�D1�

where p+�m�= ��0
m+1+�1

m+1� / ��0
m+�1

m� and p−�m�=1− p+�m�,
Q.E.D.

The first step to calculate the SCP of this protocol is to
compute its variation after a ZZ measurement. Considering
that the set 
�pi , �mi�� , i=1, . . . , l� describes all the resulting
states of n measurements, and writing ���m� the smallest
Schmidt coefficient of �m�1�, the new SCP reads

SZZ
�n+1� = �

i=1

l

pi2�p+�mi��+�mi� + p−�mi��−�mi��

= SZZ
�n� − ��0 − �1�p�m = 0,n� , �D2�

where p�m=0,n� stands for the probability of getting the

state �m=0� after n measurements. Since this probability is
not zero for n odd only, it results that the SCP decreases for
n even only. We have now to calculate the probability p�m
=0,n� of getting a singlet after n measurements: it is the
weighted sum over all possible paths � that go from the root
node m=0 to the node m=0 at position n in the tree drawn in
Fig. 15. We notice that the weight w depends on n only and
not on �. This is indeed the fact since p+�m�p−�m+1�
=�0�1 for all m and because we have to go up in the tree as
many times as we have to go down. Thus, for n odd we have
w�n�= ��0�1��n+1�/2 and using basic combinatorial analysis
one finds that p�m=0,n�= ��0�1�k� 2k

k
�, with k= 1

2 �n+1��N.
Finally, denoting by �x� the integer part of x, the general
expression of the SCP for a chain of N repeaters reads

SZZ
�N� = 1 − ��0 − �1� �

k=0

�N/2�

��0�1�k�2k

k
 . �D3�
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